lunes, 1 de diciembre de 2008

energia renobable

Se denomina energía renovable a la energía que se obtiene de fuentes naturales virtualmente inagotables, unas por la inmensa cantidad de energía que contienen, y otras porque son capaces de regenerarse por medios naturales.
Contenido

lunes, 24 de noviembre de 2008

energia cinetica




Cuando un cuerpo está en movimiento posee energía cinética ya que al chocar contra otro puede moverlo y, por lo tanto, producir un trabajo.
Para que un cuerpo adquiera energía cinética o de movimiento, es decir, para ponerlo en movimiento, es necesario aplicarle una fuerza. Cuanto mayor sea el tiempo que esté actuando dicha fuerza, mayor será la velocidad del cuerpo y, por lo tanto, su energía cinética será también mayor.
Otro factor que influye en la energía cinética es la masa del cuerpo.
Por ejemplo, si una bolita de vidrio de 5 gramos de masa avanza hacia nosotros a una velocidad de 2 km / h no se hará ningún esfuerzo por esquivarla. Sin embargo, si con esa misma velocidad avanza hacia nosotros un camión, no se podrá evitar la colisión.
La fórmula que representa la Energía Cinética es la siguiente:
E c = 1 / 2 · m · v 2
E c = Energía cinética
m = masa
v = velocidad
Cuando un cuerpo de masa m se mueve con una velocidad v posee una energía cinética que está dada por la fórmula escrita más arriba.
En esta ecuación, debe haber concordancia entre las unidades empleadas. Todas ellas deben pertenecer al mismo sistema. En el Sistema Internacional (SI), la masa m se mide en kilogramo (kg) y la velocidad v en metros partido por segundo ( m / s), con lo cual la energía cinética resulta medida en Joule ( J ).

Energia Calorica
La Energía Calórica es aquella que poseen los cuerpos, cada vez que son expuestos al efecto del calor. También, se puede decir que corresponde a la energía que se transmite entre dos cuerpos que están a diferentes temperaturas, es decir, con distinto nivel calórico.El calor es una forma de energía que se encuentra en constante tránsito. Lo que significa que si un cuerpo está a un determinado nivel calórico, el calor se transmite al medio ambiente. Puedes observar lo que sucede cuando dos cuerpos se ponen en contacto, estando uno más frío que el otro. En este caso el calor del cuerpo caliente se transmite al cuerpo más frío, hasta que ambos adquieren la misma temperatura.Cada vez que un cuerpo recibe calor, las moléculas que forman parte del objeto adquieren esta energía, hecho que genera un mayor movimiento de las moléculas que forman parte del cuerpo. A mayor energía del cuerpo, mayor será el grado de agitación de las moléculas.

energia mecanica: Es la capacidad que tiene un cuerpo o conjunto de cuerpos de realizar movimiento, debido a su energía potencial o cinética; por ejemplo: La energía que poseemos para correr en bicicleta (energía potencial) y hacer cierto recorrido (energía mecánica); o el agua de unas cascada (energía potencial), que al caer hacer mover las aspas de una turbina (energía mecánica.

energia quimica:Energía Química: Es la producida por reacciones químicas que desprenden calor o que por su violencia pueden desarrollar algún trabajo o movimiento. Los alimentos son un ejemplo de energía química ya que al ser procesados por el organismo nos ofrecen calor (calorías) o son fuentes de energía natural (proteínas y vitaminas) . Los combustibles al ser quemados producen reacciones químicas violentas que producen trabajo o movimiento.

energia electrica:Energía Eléctrica: Esta es la energía más conocida y utilizada por todos. Se produce por la atracción y repulsión de los campos magnéticos de los átomos de los cuerpos. La utilizamos diariamente en nuestros hogares. Observamos como se transforma en energía calórica en el horno o la plancha; en energía luminosa en el bombillo y energía mecánica en los motores.

lunes, 17 de noviembre de 2008

cadenas alimenticias




.-CADENA ALIMENTICIA:En la naturaleza los seres vivos se encuentran íntimamente correlacionados en lo referente a la búsqueda de alimentos, protección y reproducción. En los animales existe competencia por el alimento y muchos deben cuidarse de no ser devorados. En cambio entre las plantas solo necesitan de agua, luz, suelo rico en minerales y aire. Es por eso que el equilibrio existente en el medio ambiente está en las relaciones alimenticias. Los alimentos pasan de un ser a otro en una serie de actividades reiteradas de comer y ser comido. Lo cual es en síntesis la cadena alimenticia que tiene como máximo cuatro o cinco eslabones. El equilibrio natural es la interdependencia total de los seres vivos entre sí y con el medio que lo rodea. El hombre forma parte de este equilibrio y no puede independizarse del él. La cadena alimenticia es el continuo proceso del paso de alimentos de un ser a otro al comer y ser comido.La base de la cadena es el mundo inorgánico constituido por: suelo, agua ,aire y energia
Una de las relaciones más importantes entre los seres vivos surge de la necesidad de alimentarse para reponer energía y poder realizar distintas actividades. Las plantas producen su propio alimento. Los animales pueden ser herbívoros, carnívoros u omnívoros. Las bacterias y hongos descomponen los deshechos de plantas y animales, reduciéndolos a elementos simples que, nuevamente son utilizados por las plantas como alimento. De esta forma se cierra la cadena alimentaria.

lunes, 10 de noviembre de 2008

ciclo del oxigeno



Ciclo del Oxígeno
El oxígeno es el elemento químico más abundante en los seres vivos. Forma parte del agua y de todo tipo de moléculas orgánicas. Como molécula, en forma de O2, su presencia en la atmósfera se debe a la actividad fotosintética de primitivos organismos. Al principio debió ser una sustancia tóxica para la vida, por su gran poder oxidante. Todavía ahora, una atmósfera de oxígeno puro produce daños irreparables en las células. Pero el metabolismo celular se adaptó a usar la molécula de oxígeno como agente oxidante de los alimentos abriendo así una nueva vía de obtención de energía mucho más eficiente que la anaeróbica.
La reserva fundamental de oxígeno utilizable por los seres vivos está en la atmósfera. Su ciclo está estrechamente vinculado al del carbono pues el proceso por el que el C es asimilado por las plantas (fotosíntesis), supone también devolución del oxígeno a la atmósfera, mientras que el proceso de respiración ocasiona el efecto contrario.
Otra parte del ciclo natural del oxígeno que tiene un notable interés indirecto para los seres vivos de la superficie de la Tierra es su conversión en ozono. Las moléculas de O2, activadas por las radiaciones muy energéticas de onda corta, se rompen en átomos libres de oxígeno que reaccionan con otras moléculas de O2, formando O3 (ozono). Esta reacción es reversible, de forma que el ozono, absorbiendo radiaciones ultravioletas vuelve a convertirse en O2.

ciclo del carbono

Ciclo del carbono
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Es básico en la formación de las moléculas de carbohidratos, lípidos, proteínas y ácidos nucleicos; pues todas las moléculas orgánicas están formadas por cadenas de carbonos enlazados entre sí.
Es un elemento químico de número atómico 6 y símbolo C. Es sólido a temperatura ambiente. Dependiendo de las condiciones de formación, puede encontrarse en la naturaleza en distintas formas alotrópicas, carbono amorfo y cristalino en forma de grafito o diamante. Es el pilar básico de la química orgánica. Se conocen cerca de 10 millones de compuestos de carbono, y forma parte de todos los seres vivos conocidosLa reserva fundamental de carbono, en moléculas de CO2 que los seres vivos puedan asimilar, es la atmósfera y la hidrosfera. Este gas está en la atmósfera en una concentración de más del 0,03% y cada año aproximadamente un 5% de estas reservas de CO2 se consumen en los procesos de fotosíntesis, es decir que todo el anhídrido carbónico se renueva en la atmósfera cada 20 años.
La vuelta de CO2 a la atmósfera se hace cuando en la respiración los seres vivos oxidan los alimentos produciendo CO2. En el conjunto de la biosfera la mayor parte de la respiración la hacen las raíces de las plantas y los organismos del suelo y no, como podría parecer, los animales más visibles.
Los seres vivos acuáticos toman el CO2 del agua. La solubilidad de este gas en el agua es muy superior a la del aire

El carbono es elemento básico en la formación de las moléculas de carbohidratos, lípidos, proteínas y ácidos nucleicos, pues todas las moléculas orgánicas están formadas por cadenas de carbonos enlazados entre sí.
La reserva fundamental de carbono, en moléculas de CO2 que los seres vivos puedan asimilar, es la atmósfera y la hidrosfera. Este gas está en la atmósfera en una concentración de más del 0,03% y cada año aproximadamente un 5% de estas reservas de CO2, se consumen en los procesos de fotosíntesis, es decir que todo el anhídrido carbónico se renueva en la atmósfera cada 20 años.
La vuelta de CO2 a la atmósfera se hace cuando en la respiración los seres vivos oxidan los alimentos produciendo CO2. En el conjunto de la biosfera la mayor parte de la respiración la hacen las raíces de las plantas y los organismos del suelo y no, como podría parecer, los animales más visibles.
Los seres vivos acuáticos toman el CO2 del agua. La solubilidad de este gas en el agua es muy superior a la de otros gases, como el O2 o el N2, porque reacciona con el agua formando ácido carbónico. En los ecosistemas marinos algunos organismos convierten parte del CO2 que toman en CaCO3 que necesitan para formar sus conchas, caparazones o masas rocosas en el caso de los arrecifes. Cuando estos organismos mueren sus caparazones se depositan en el fondo formando rocas sedimentarias calizas en el que el C queda retirado del ciclo durante miles y millones de años. Este C volverá lentamente al ciclo cuando se van disolviendo las rocas.
El petróleo, carbón y la materia orgánica acumulados en el suelo son resultado de épocas en las que se ha devuelto menos CO2 a la atmósfera del que se tomaba. Así apareció el O2 en la atmósfera. Si hoy consumiéramos todos los combustibles fósiles almacenados, el O2 desaparecería de la atmósfera. Como veremos el ritmo creciente al que estamos devolviendo CO2 a la atmósfera, por la actividad humana, es motivo de preocupación respecto al nivel de infecto invernadero que puede estar provocando, con el cambio climático consiguiente.

lunes, 3 de noviembre de 2008

los factores de un ecosistema



Qué factores integran el ecosistema?
Como ya se mencionó, el ecosistema se encuentra integrado por un componente viviente también conocido como factor biótico y un componente no viviente o factor abiótico. A continuación se describen con algún detalle las dos clases de factores que integran los ecosistemas.
4.2.2.1. Factores bióticos 4.2.2.2. Factores abióticos
4.2.2.1. Factores bióticos
Usando un ejemplo sencillo, como es un lago, podemos darnos cuenta que en él se encuentra gran variedad de organismos vivos que van desde plantas hasta peces. Cada uno de ellos juega una importante función dentro del ecosistema lago, la cual nos permite clasificarlos en: productores, consumidores, detritívoros y saprófitos.
Productores: Son fundamentalmente los organismos capaces de sintetizar su propio alimento usando energía solar y compuestos inorgánicos. Dentro de este grupo encontramos a las plantas vasculares y no vasculares y algunos tipos de bacterias. Su papel es muy importante dentro del ecosistema ya que fijan en sus tejidos la energía proveniente del sol a través del proceso de fotosíntesis. Gracias a ellas, la energía queda a disposición de en sus tejidos para otros organismos incapaces de realizar dicho proceso
Factores abióticos
Los factores abióticos son los distintos componentes que determinan el espacio físico en el cual habitan los seres vivos, dentro de los más importantes podemos encontrar: el agua, la temperatura, la luz, el pH, el suelo y los nutrientes. A continuación se discutirá brevemente como cada uno de estos factores juega un papel en el desarrollo de la vida.
AguaEl agua es uno de los elementos abióticos más importantes, este es un compuesto esencial para la vida y constituye gran parte de los tejidos vivos; se sabe que los animales terrestres se encuentran compuestos por agua en un 75% e invierten una gran cantidad de su energía en la conservación de su contenido corporal de agua. Para las plantas, la situación no es muy diferente, una gran la mayoría de las actividades que ellas realizan dependen de la presencia del agua.
Todos los procesos que permiten y regulan la vida se realizan en medio acuoso, dada la propiedad del agua de ser un excelente solvente. De igual forma, los individuos que habitan en medios acuáticos se encuentran favorecidos por las propiedades físicas del agua, ya que el agua líquida presenta una densidad mayor que el hielo por lo cual este último flota, formando una barrera que aísla el líquido subyacente del frío ambiental protegiendo así a los organismos acuáticos en épocas invernales.
En zonas áridas donde la escasez del líquido es permanente, tanto las plantas como los animales presentan adaptaciones para conservar agua. Un ejemplo sencillo de ello son los cactus que modifican sus hojas a espinas para limitar la superficie de evapotranspiración; la fotosíntesis la realizan en sus tallos. A manera de conclusión podría decirse que la vida tal como la conocemos es imposible sin agua.
TemperaturaÉsta impone una restricción importante a la vida dado que los organismos vivientes son máquinas químicas complejas dentro de las cuales la gran mayoría de funciones vitales son realizadas por enzimas (hipervínculo página celular) de carácter proteico, cuya actividad se encuentra en un rango entre los 0 y los 60ºC. Por encima de estas temperaturas sufren desnaturalización, ello acarrea el cese de su función, llevando así a la muerte del individuo. Por otra parte, si la temperatura desciende por debajo de los 4ºC, el agua, componente principal de los tejidos vivos, pasa a su estado sólido, en el cual su volumen es mayor. Tal aumento de volumen implica la destrucción de organelos celulares y aún de la propia célula.
La temperatura regula además la velocidad a la cual se llevan a cabo las reacciones químicas, una mayor temperatura implica una mayor velocidad de reacción. Esto debido fundamentalmente a que la temperatura es una medida indirecta del calor, una mayor temperatura indica un contenido de energía mayor en las moléculas y por tanto una mayor reactividad de las mismas. Organismos tales como aves y mamíferos invierten una gran cantidad de su energía para conservar una temperatura constante óptima con el fin de asegurar que las reacciones químicas, vitales para su supervivencia, se realicen a velocidades adecuadas que les permitan obtener eficiencia en todos sus procesos.

lunes, 13 de octubre de 2008

plantas superiores










Plantas superioresPensábamos que las plantas superiores podrían ser palmas, árboles o tal vez orquídeas que son plantas muy evolucionadas.
No, plantas superiores para mucha gente son plantas medicinales de mucha utilidad para los humanos que han sido reconocidas como plantas que curan muchas enfermedades.
En todas las épocas ha habido mucho interés por estas plantas medicinales. Hubo una planta que se usó para curar enfermedades en la antigüedad. Esta dibujada en las monedas de Cirene o Kyrenaica (Libia) (308-277 BC) y se llamaba “silphion”, y se ha determinado que era un representante de la familia Apiaceae (Umbelliferae). Tuvo tanta demanda que simplemente se extinguió.
Las farmacias antiguas eran los laboratorios de aquel entonces, donde se elaboraban las medicinas provenientes de plantas, que tenían el máximo interés por parte de los médicos. Carlos Linneo, al quien llaman el padre de la botánica, no era botánico sino médico y sus apóstoles quienes conquistaron al mundo con sus investigaciones botánicas, se concentraban en primer lugar en las plantas medicinales.
Pedro Loefling, quién era discípulo de Linneo y fue el primer botánico que vino a Venezuela en 1754 – casi 50 años antes de Alexander von Humboldt –tenía por encargo de Linneo de averiguar primero las plantas medicinales.
De esta forma, las plantas medicinales venezolanas fueron descritas y bautizadas por Linneo.
El interés actual por las plantas medicinales, algunas de las cuales se llaman plantas superiores, se mantiene y ha aumentado tremendamente con el uso en la homeopatía. y la medicina sistémica. Se han realizado investigaciones científicas sobre muchas de estas plantas y en efecto han mostrado su poder curativo contra una gran cantidad de enfermedades.
Además de hierbas entre las plantas superiores se encuentran también algunas palmas y algunos árboles, por ejemplo Serenoa repens (Saw palmetto) y Ginco biloba.
En todas las épocas las palmas datileras y los cocoteros también han jugado un papel importante. En las monedas de Cirene se encuentran también las imágenes de datileras!
La mejor introducción que podemos imaginar para la comprensión y respeto a las plantas como miembros del reino vegetal son, por lo tanto, las plantas superiores.
El cultivo y el cuidado de las plantas medicinales en una plantación fue el tema de una ponencia de una agrónoma en un congreso botánico. Si mal no recuerdo fue un municipio en Monagas donde establecieron el cultivo de plantas medicinales a gran escala.
Así podemos iniciarnos con las plantas, que no solo son decorativas y dan flores sino también son útiles para nuestra salud y algunos tienen aroma y gusto y se usan como condimentos.
Como anexo una lista de adaptógenos primarios (energizantes) y secundarios (bidireccionales) con el nombre común, el nombre científico y el nombre de la familia de cada planta. Nótense la gran cantidad de plantas bautizadas por Linneo
Las fanerógamas, espermatofitos, o plantas superiores constituyen un grupo de vegetales bastante homogéneo, caracterizado por una organización externa, donde se puede diferenciar claramente la raíz, el tallo, las hojas, las flores y los frutos con las semillas. También presentan una clara diferenciación interna, donde existen tejidos perfectamente diferenciados estructural y funcionalmente.
Aunque se trata de un grupo básicamente terrestre, algunas especies se han adaptado al medio subacuático. Éstas son comunes en las aguas poco profundas de los mares tropicales y del Mediterráneo, donde juegan un importante papel como estabilizadores del sedimento y como productores primarios.
Sus densas formaciones, conocidas en español como praderas o como alguers en catalán, constituyen uno de los ecosistemas marinos más productivos, siendo fuente indirecta de alimento y lugar de refugio o cría para muchos organismos, además de participar activamente en el ciclo de los nutrientes.
Las fanerógamas son plantas perfectamente adaptadas a vivir en el mar, pudiendo resistir perfectamente temporales y corrientes. También han resuelto de forma efectiva la polinización y la dispersión de las semillas. Sus flores suelen ser pequeñas y poco diferenciadas. Sus formaciones constan de una complicada red formada por los rizomas, de los que parten las raíces y las hojas, generalmente de forma plana y acintada, y que crecen en haces
Existen pocas plantas con tanta belleza y gracia como los Liliums, con sus flores que parecen trompetas y crecen en diversas tonalidades de blanco, amarillo, anaranjado, rosado o rojo. Son originarias de las zonas templadas del esmiferio norte; mientras que algunas han sido cultivadas desde hace más de tres mil años, no fue hasta principios del siglo pasado cuando adquirieron una gran popularidad.
_________________________________________________________
El Lilium es más conocido como Azucena y es una planta muy resistente. Muchas variedades de estas magníficas flores emanan un profundo aroma al nochecer. Crecen en tallos erectos, que miden entre 1,2 y 1,5m de altura. Una o dos macetas de estos lirios constituyen una excelente atracción en el jardín. Todas las Azucenas tienen raíces bulbosas. Agunas son resistentes y otras semiresistentes, mientras que otras son muy frágiles; a la mayoría les gusta estar expuestas al sol o en semi-sombra. Se adaptan bastante bien al cultivo en maceta y resultan una fabulosa elección para balcones y terrazas
Las Gimnospermas:
Las Plantas Gimnospermas se caracterizan porque tienen vasos conductores y flores pero no tienen frutos. Son plantas de gran porte, muy ramificados y longevos y de hojas pequeñas y perennes, en su gran mayoria. Son árboles o arbustos como el pino, el enebro, el cedro, el abeto, la araucaria, el ciprés y la sabina. Sus flores son pequeñas y poco vistosas. Muchos de ellos producen piñas u otros falsos frutos, que solo sirven para proteger a las semillas